
Parallel
Programming
Lec 5

1

Books

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Bubble Sort
In bubble sort, the largest number is first moved to the
very end of the list by a series of compare-and-
exchange operations, starting at the opposite end.

The procedure repeats, stopping just before the
previously positioned largest number, to get the next-
largest number.

In this way, the larger numbers move (like a bubble)
toward the end of the list.

4

Bubble Sort

5

Bubble Sort

Bubble Sort

6

Bubble Sort
For (i = N - 1; i > 0; i--)

For (j = 0; j < i; j++)

If (a[j] > a[j+1])

temp = a[j];

a[j] = a[j+1];

a[j+1] = temp;

End If

End For

End For
7

Bubble Sort
The total number of steps in the bubble sort
algorithm is

T(n) = (n-1) + (n-2) + (n-3) + … + 3 + 2 + 1

T(n) = 𝑖=1
𝑛−1 𝑖 =

1+ 𝑛−1

2
(𝑛 − 1) =

𝑛(𝑛−1)

2

which corresponds to a time complexity of T(n) =
O(n2).

8

Parallel Odd Even
Transposition Sort

It is based on the Bubble Sort technique, which
compares every 2 consecutive numbers in the array and
swap them if first is greater than the second to get an
ascending order array.

It consists of 2 phases – the odd phase and even phase:
◦ Odd phase: Every odd indexed element is compared with

the next even indexed element(considering 1-based
indexing).

◦ Even phase: Every even indexed element is compared
with the next odd indexed element.

9

Odd Even Transposition Sort

10

Odd Even Transposition Sort

11

Odd Even Transposition Sort
For i = 0 to i < n do

If(i % 2 == 0)

For j = 0 to j < n-1 do in parallel

If(j % 2 == 0)

x[j] = min(x[j], x[j+1])

Else

x[j] = max(x[j-1], x[j])

Else

For j = 0 to j < n-1 do in parallel

If(j % 2 == 0)

x[j] = max(x[j-1], x[j])

Else

x[j] = min(x[j], x[j+1])

12

Odd Even Transposition Sort
Each iteration cost constant step:

T(n) = (1 + 1 + 1 +⋯+ 1) = 0
𝑛−1 1 = n

It takes n steps to obtain the final sorted list in a
parallel implementation, which corresponds to a
time complexity of O(n)

13

Odd-Even Merge
Odd-even mergesort is a parallel sorting
algorithm based on the recursive application of
the odd-even merge algorithm.

It merges sorted sublists bottom up – starting
with sublists of size 2 and merging them into
bigger sublists – until the final sorted list is
obtained.

14

Odd-Even Merge
start with a two sorted lists of length n/2:

consider elements with odd and even index:

sort odd- and even-indexed elements separately:

final sequence is nearly sorted (only pairwise exchange required)

15

OddEvenSplit
OddEvenSplit (Input :: A: Array [0 . . n-1] , Output ::
Odd:Array [0 . . (n-1)/2] , Even:Array [0 . . (n-1)/2])

For j = 0 to j < n do in parallel

If(j % 2 == 0)

Even [j/2] = A[j] ;

Else

Odd [(j+1)/2] := A[j];

16

OddEvenJoin
OddEvenJoin (Input :: Odd : Array [0 . . (n-1) / 2] ,
Even :Array[0 . . (n-1)/2], Output :: A:Array[0 . . n-1])

For j = 0 to j < n do in parallel
If(j % 2 == 0)

A[j] = Even [j/2] ;

Else

A[j] = Odd[(j+1)/2] ;

17

Parallel OddEvenMerge
OddEvenMerge (A: Array [0 . . n-1])

If n ≤ 2

SortTwo (A);

Else

OddEvenSplit (A, Odd, Even) ;

do in parallel

OddEvenMerge (Odd) ;

OddEvenMerge (Even) ;

OddEvenJoin (A, Odd, Even) ;

for j = 1 to j < (n/2) do in parallel

If A[2j] > A[2j +1]

exchange A[2j] and A[2j +1]
18

OddEvenMerge

19

OddEvenMergeSort
OddEvenMergeSort (A: Array [0 . . . n-1])

// n assumed to be 2𝑘

If n ≥ 2
do in parallel

OddEvenMergeSort (A [0 . . . (n/2)-1]) ;

OddEvenMergeSort (A[n/2 . . . n-1]) ;

OddEvenMerge(A) ;

20

Complexity of Odd-Even MergeSort
Complexity of OddEvenMerge:
◦ O(log n) subsequent steps

◦ each step executed on n/2 processors

Complexity of Odd-Even MergeSort:
◦ requires executions of OddEvenMerge on subarrays of lengths

◦ k = 2, 4, … ; n

◦ each OddEvenMerge step requires O(log k) steps

◦ number of total subsequent steps:

◦ log 2 + log 4 + … + log n = 𝑖=1
log 𝑛

𝑖 = (log n) * ((log n) + 1)/2 = O(log n)2

21

?

22

