Parallel
Programming
Lec 5

Books

Numerical Analysis and Scientific Computing

Parallel Algorithms

Henri Casanova, Arnaud legrand, and Yues Robert
co CRC Press
a cmarman a math sook

Undergradiate lopics in Computer Scieane

Paman Trobec - Bošjan Sinmik Patricio Bulic • Borut Robič

Introduction to Parallel Computing

From Algorithms to Programming on State-of-the-Art Platforms
vilics

Wiley Series on Parallel and Distributed Computing . Albert Zomayo. Series Editor

ALGORITHMS AND PARALLEL COMPUTING

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Bubble Sort

In bubble sort, the largest number is first moved to the very end of the list by a series of compare-andexchange operations, starting at the opposite end.
The procedure repeats, stopping just before the previously positioned largest number, to get the nextlargest number.

In this way, the larger numbers move (like a bubble) toward the end of the list.

Bubble Sort

First pass

Bubble Sort

Bubble Sort

For ($\mathrm{i}=\mathrm{N}-1 ; \mathrm{i}>0 ; i--)$ For ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$)

$$
\text { If }(a[j]>a[j+1])
$$

$$
\text { temp }=a[j] ;
$$

$$
a[j]=a[j+1] ;
$$

$$
a[j+1]=\text { temp; }
$$

End If

End For
End For

Bubble Sort

The total number of steps in the bubble sort algorithm is
$T(n)=(n-1)+(n-2)+(n-3)+\ldots+3+2+1$
$\mathrm{T}(\mathrm{n})=\sum_{i=1}^{n-1} i=\frac{(1+(n-1))}{2}(n-1)=\frac{n(n-1)}{2}$
which corresponds to a time complexity of $T(n)=$ $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Parallel Odd Even Transposition Sort

It is based on the Bubble Sort technique, which compares every 2 consecutive numbers in the array and swap them if first is greater than the second to get an ascending order array.

It consists of 2 phases - the odd phase and even phase:
${ }^{\circ}$ Odd phase: Every odd indexed element is compared with the next even indexed element(considering 1-based indexing).

- Even phase: Every even indexed element is compared with the next odd indexed element.

Odd Even Transposition Sort

Unsorted array: 2, 1, 4, 9, 5, 3, 6, 10

Step 1(odd):	$\underline{2}$	1	$\underline{4}$	9	$\underline{5}$	3	$\underline{6}$	10
Step 2(even):	1	$\underline{2}$	4	$\underline{9}$	3	$\underline{5}$	6	10
Step 3(odd):	$\underline{1}$	$\underline{2}$	$\underline{4}$	3	$\underline{9}$	5	$\underline{6}$	10
Step 4(even):	1	$\underline{2}$	3	$\underline{4}$	5	$\underline{9}$	6	10
Step 5(odd):	$\underline{1}$	2	$\underline{3}$	4	$\underline{5}$	6	$\underline{9}$	10
Step 6(even):	1	$\underline{2}$	3	$\underline{4}$	5	$\underline{6}$	9	10
Step 7(odd):	$\underline{1}$	$\underline{2}$	$\underline{3}$	4	$\underline{5}$	6	$\underline{9}$	10
Step 8(even):	1	$\underline{2}$	3	$\underline{4}$	5	$\underline{6}$	9	10

Sorted array: $1,2,3,4,5,6,9,10$

Odd Even Transposition Sort

Step

P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}

Time

Odd Even Transposition Sort

For $\mathrm{i}=0$ to $\mathrm{i}<\mathrm{n}$ do
If($\mathrm{i} \% 2==0$)
For $\mathrm{j}=0$ to $\mathrm{j}<\mathrm{n}-1$ do in parallel

$$
\begin{aligned}
& \text { If(j } \% 2==0) \\
& x[j]=\min (x[j], x[j+1])
\end{aligned}
$$

Else

$$
x[j]=\max (x[j-1], x[j])
$$

Else
For $\mathrm{j}=0$ to $\mathrm{j}<\mathrm{n}-1$ do in parallel

$$
\begin{aligned}
& \text { If(j } \% 2==0) \\
& x[j]=\max (x[j-1], x[j])
\end{aligned}
$$

Else

$$
x[j]=\min (x[j], x[j+1])
$$

Odd Even Transposition Sort

Each iteration cost constant step:
$\mathrm{T}(\mathrm{n})=\sum(1+1+1+\cdots+1)=\sum_{0}^{n-1} 1=\mathrm{n}$
It takes n steps to obtain the final sorted list in a parallel implementation, which corresponds to a time complexity of $\mathrm{O}(\mathrm{n})$

Odd-Even Merge

Odd-even mergesort is a parallel sorting algorithm based on the recursive application of the odd-even merge algorithm.
It merges sorted sublists bottom up - starting with sublists of size 2 and merging them into bigger sublists - until the final sorted list is obtained.

Odd-Even Merge

start with a two sorted lists of length $n / 2$:

2	3	4	7	1	5	6	8

consider elements with odd and even index:

2	3	4	7	1	5	6	8

sort odd- and even-indexed elements separately:

1	3	2	5	4	7	6	8

final sequence is nearly sorted (only pairwise exchange required)

OddEvenSplit

OddEvenSplit (Input :: A: Array [0. . $\mathrm{n}-1$] , Output :: Odd:Array [0 . . (n-1)/2] , Even:Array [0 . . (n-1)/2])

For $\mathrm{j}=0$ to $\mathrm{j}<\mathrm{n}$ do in parallel
If(j \% 2 == 0)
Even [j/2] = A[j];
Else
Odd [($\mathrm{j}+1$)/2] := A[j];

OddEvenJoin

OddEvenJoin (Input :: Odd : Array [$0 . .(n-1) / 2$] , Even :Array[0 . . (n-1)/2], Output :: A:Array[0 . . n-1])

For $\mathrm{j}=0$ to $\mathrm{j}<\mathrm{n}$ do in parallel
If(j \% $2==0$)

$$
A[j]=\operatorname{Even}[j / 2] ;
$$

Else

$$
A[j]=\operatorname{Odd}[(j+1) / 2] ;
$$

Parallel OddEvenMerge

OddEvenMerge (A: Array [0 . . n-1])
If $\mathrm{n} \leq 2$
SortTwo (A);
Else
OddEvenSplit (A, Odd, Even) ;
do in parallel
OddEvenMerge (Odd) ;
OddEvenMerge (Even) ;
OddEvenJoin (A, Odd, Even) ;
for $j=1$ to $j<(n / 2)$ do in parallel
If $A[2 j]>A[2 j+1]$
exchange $A[2 j]$ and $A[2 j+1]$

OddEvenMerge

1	3	2	4	5	6	7	8
1	2	3	4	5	6	7	8

OddEvenMergeSort

OddEvenMergeSort (A: Array [$0 .$. n-1])
// n assumed to be 2^{k}

If $n \geq 2$
do in parallel
OddEvenMergeSort (A [0 . . . (n/2)-1]) ;
OddEvenMergeSort (A[n/2 . . $n-1$]) ;
OddEvenMerge(A) ;

Complexity of Odd-Even MergeSort

Complexity of OddEvenMerge:

- O(log n) subsequent steps
- each step executed on $\mathrm{n} / 2$ processors

Complexity of Odd-Even MergeSort:

- requires executions of OddEvenMerge on subarrays of lengths
- $\mathrm{k}=2,4, \ldots$; n
- each OddEvenMerge step requires O(log k) steps
- number of total subsequent steps:
- $\log 2+\log 4+\ldots+\log \mathrm{n}=\sum_{i=1}^{\log n} i=(\log \mathrm{n}) *((\log \mathrm{n})+1) / 2=\mathrm{O}(\log \mathrm{n})^{2}$

