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Bubble Sort
In bubble sort, the largest number is first moved to the 
very end of the list by a series of compare-and-
exchange operations, starting at the opposite end.

The procedure repeats, stopping just before the 
previously positioned largest number, to get the next-
largest number.

In this way, the larger numbers move (like a bubble) 
toward the end of the list.
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Bubble Sort
For (i = N - 1; i > 0; i--)

For (j = 0; j < i; j++) 

If (a[j] > a[j+1])

temp = a[j];

a[j] = a[j+1];

a[j+1] = temp;

End If

End For

End For
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Bubble Sort
The total number of steps in the bubble sort 
algorithm is

T(n) = (n-1) + (n-2) + (n-3) + … + 3 + 2 + 1

T(n) =  𝑖=1
𝑛−1 𝑖 = 

1+ 𝑛−1

2
(𝑛 − 1) = 

𝑛(𝑛−1)

2

which corresponds to a time complexity of T(n) = 
O(n2).
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Parallel Odd Even 
Transposition Sort

It is based on the Bubble Sort technique, which 
compares every 2 consecutive numbers in the array and 
swap them if first is greater than the second to get an 
ascending order array.

It consists of 2 phases – the odd phase and even phase:
◦ Odd phase: Every odd indexed element is compared with 

the next even indexed element(considering 1-based 
indexing).

◦ Even phase: Every even indexed element is compared 
with the next odd indexed element.
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Odd Even Transposition Sort
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Odd Even Transposition Sort
For i = 0 to i < n do

If( i % 2 == 0)

For j = 0 to j < n-1 do in parallel

If(j % 2 == 0)

x[j] = min(x[j], x[j+1])

Else

x[j] = max(x[j-1], x[j])

Else

For j = 0 to j < n-1 do in parallel

If(j % 2 == 0)

x[j] = max(x[j-1], x[j])

Else

x[j] = min(x[j], x[j+1])
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Odd Even Transposition Sort
Each iteration cost constant step: 

T(n)  =  (1 + 1 + 1 +⋯+ 1) =  0
𝑛−1 1 = n

It takes n steps to obtain the final sorted list in a 
parallel implementation, which corresponds to a 
time complexity of O(n)
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Odd-Even Merge
Odd-even mergesort is a parallel sorting 
algorithm based on the recursive application of 
the odd-even merge algorithm.

It merges sorted sublists bottom up – starting 
with sublists of size 2 and merging them into 
bigger sublists – until the final sorted list is 
obtained.
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Odd-Even Merge
start with a two sorted lists of length n/2:

consider elements with odd and even index:

sort odd- and even-indexed elements separately:

final sequence is nearly sorted (only pairwise exchange required)
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OddEvenSplit
OddEvenSplit (Input :: A: Array [ 0 . . n-1 ] , Output :: 
Odd:Array [0 . . (n-1)/2] , Even:Array [0 . . (n-1)/2])

For j = 0 to j < n do in parallel

If(j % 2 == 0)

Even [ j/2 ] = A[ j ] ;

Else

Odd [ (j+1)/2 ] := A[ j ];
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OddEvenJoin
OddEvenJoin (Input :: Odd : Array [ 0 . . (n-1) / 2 ] , 
Even :Array[0 . . (n-1)/2], Output :: A:Array[0 . . n-1]) 

For j = 0 to j < n do in parallel
If(j % 2 == 0)

A[ j ] = Even [ j/2 ] ;

Else

A[ j ] = Odd[ (j+1)/2 ] ;
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Parallel OddEvenMerge
OddEvenMerge (A: Array [ 0 . . n-1 ])

If n ≤ 2 

SortTwo (A);

Else

OddEvenSplit (A, Odd, Even) ;

do in parallel

OddEvenMerge (Odd) ;

OddEvenMerge (Even) ; 

OddEvenJoin (A, Odd, Even) ;

for j = 1 to j < (n/2) do in parallel

If A[2j ] > A[2j +1]

exchange A[2j ] and A[2j +1]
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OddEvenMerge

19



OddEvenMergeSort
OddEvenMergeSort (A: Array [ 0 . . . n-1 ] )

// n assumed to be 2𝑘

If n ≥ 2 
do in parallel

OddEvenMergeSort (A [ 0 . . . (n/2)-1 ] ) ;

OddEvenMergeSort (A[ n/2 . . . n-1 ] ) ;

OddEvenMerge(A) ;
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Complexity of Odd-Even MergeSort
Complexity of OddEvenMerge:
◦ O(log n) subsequent steps

◦ each step executed on n/2 processors

Complexity of Odd-Even MergeSort:
◦ requires executions of OddEvenMerge on subarrays of lengths

◦ k = 2, 4, … ; n

◦ each OddEvenMerge step requires O(log k) steps

◦ number of total subsequent steps:

◦ log 2 + log 4 + … + log n =  𝑖=1
log 𝑛

𝑖 = (log n) * ((log n) + 1)/2 = O(log n)2
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